BIFURCATION PHENOMENA ASSOCIATED TO THE p-LAPLACE OPERATOR

MOHAMMED GUEDDA AND LAURENT VERON

ABSTRACT. We determine the structure of the set of the solutions u of $-(|u_x|^{p-2}u_x)_x + f(u) = \lambda |u|^{p-2}u$ on (0,1) such that u(0) = u(1) = 0, where p > 1 and $\lambda \in \mathbf{R}$. We prove that the solutions with k zeros are unique when 1 but may not be so when <math>p > 2.

0. Introduction. In this article we study the structure of the set E_{λ} of the solutions of the following nonlinear eigenvalue problem

(0.1)
$$\begin{cases} -(|u_x|^{p-2}u_x)_x + f(u) = \lambda |u|^{p-2}u & \text{in } (0,1), \\ u(0) = u(1) = 0, \end{cases}$$

where p > 1, λ is a real number and f is a C^1 real-valued odd function such that

(0.2)
$$r \mapsto g(r) = f(r)/(|r|^{p-2}r)$$

is increasing on $(0, +\infty)$ with limits 0 at 0 and $+\infty$ at infinity. We first investigate the unperturbed eigenvalue problem

(0.3)
$$\begin{cases} -(|v_x|^{p-2}v_x)_x = \lambda |v|^{p-2}v & \text{in } (0,1), \\ v(0) = v(1) = 0. \end{cases}$$

By means of an elementary integration process we prove that (0.3) admits a non-trivial solution if and only if

(0.4)
$$\lambda = \lambda_k = k^p (p-1) \left[2 \int_0^1 \frac{dt}{(1-t^p)^{1/p}} \right]^p, \qquad k \in \mathbf{N}^*.$$

Moreover to each λ_k is associated a one-dimensional eigenspace generated by a function ω_k with exactly k-1 zeros in (0,1). Concerning the equation (0.1) we prove that each λ_k is a point of bifurcation as in the semilinear case (p=2). More precisely we define for $k \in \mathbb{N}^*$

(0.5)
$$S_k = \{ \varphi \in C : \varphi \text{ has exactly } k-1 \text{ simple zeros in } (0,1) \},$$

where $C = \{ \varphi \in C^1([0,1]) : \varphi(0) = \varphi(1) = 0 \}$ and

(0.6)
$$S_k^+ = \{ \varphi \in S_k : \varphi_x(0) > 0 \}, \qquad S_k^- = -S_k^+.$$

As λ_1 is defined as the best Poincaré constant in $W_0^{1,p}(0,1)$, that is,

(0.7)
$$\operatorname{Inf}\left\{ \int_{0}^{1} |v_{x}|^{p} dx \colon v \in W_{0}^{1,p}(0,1), \int_{0}^{1} |v|^{p} dx = 1 \right\},$$

Received by the editors July 4, 1987 and, in revised form, October 12, 1987. 1980 Mathematics Subject Classification (1985 Revision). Primary 35J60; Secondary 34C30.

it is clear that E_{λ} is reduced to the zero function when $\lambda \leq \lambda_1$.

When $1 we prove that the configuration of <math>E_{\lambda}$ is exactly the same as in the case p=2 [1], that is,

(0.8)
$$E_{\lambda} = \{0, \pm u_l, l = 1, \dots, k \colon u_l \in S_l^+\}.$$

When p>2 the structure of E_{λ} can be quite a bit more complicated for large values of λ . Let h be the inverse function of g and $F(r) = \int_0^r f(s) ds$; we define

(0.9)
$$\alpha(\lambda) = \left(\frac{\lambda}{p-1}h^p(\lambda) - \frac{p}{p-1}F(h(\lambda))\right)^{1/p}$$

and

(0.10)
$$x(\lambda) = \int_0^{h(\lambda)} \frac{ds}{(\alpha^p(\lambda) + pF(s)/(p-1) - \lambda s^p/(p-1))^{1/p}};$$

and $\lambda \mapsto x(\lambda)$ is a decreasing positive function defined on $(0, +\infty)$. If $\lambda_k < \lambda \le$ λ_{k+1} we then have

(0.11)
$$E_{\lambda} = \{0\} \cup \{\pm u_1\} \bigcup_{k=0}^{k} \{\pm E_{\lambda}^{l}\},$$

where $u_1 \in S_1^+$ and $E_{\lambda}^l \subset S_l^+$ such that

- (i) E_{λ}^{l} contains only one element if $2lx(\lambda) \geq 1$, (ii) E_{λ}^{l} is diffeomorphic to $[0,1]^{l-1}$ if $0 < 2lx(\lambda) < 1$. In case (ii) the elements of E_{λ}^{l} are constant with value $(-1)^{j+1}h(\lambda)$ on l closed and disconnected subintervals $I_j \subset (0,1), j = 1, \ldots, l$, with total length $1 - 2lx(\lambda)$.
- 1. The eigenvalue problem. For p > 1 we consider the following eigenvalue problem

(1.1)
$$\begin{cases} -(|v_x|^{p-2}v_x)_x = \lambda |v|^{p-2}v & \text{in } (0,1), \\ v(0) = v(1) = 0 \end{cases}$$

and let S be the subset of $W_0^{1,p}(0,1) \times \mathbf{R}$ of all the $(v,\lambda), v \neq 0$, satisfying (1.1).

THEOREM 1.1. There exists a unique sequence of functions $v_k \in S_k^+$, $k \in \mathbb{N}^*$, with maximal value 1 on (0,1) such that

$$(1.2) S = \{(\mu v_k, \lambda_k) \colon k \in \mathbf{N}^*\},$$

where μ is any nonzero real number and

(1.3)
$$\lambda_k = k^p \lambda_1 = k^p (p-1) \left[2 \int_0^1 \frac{dt}{(1-t^p)^{1/p}} \right]^p.$$

Moreover the following holds for m = 0, ..., k-1:

$$(1.4) v_k(x) = (-1)^m v_1(kx - m), m/k \le x \le (m+1)/k.$$

Before giving the proof it must be noticed that this result is partially contained in [5], in particular formula (1.4).

PROOF. It is clear from (1.1) and $v \in C^0([0,1])$ and then $v \in C^1([0,1])$ when p > 2 or $v \in C^2([0,1])$ when 1 (the complete regularity, due to Otani [5],will be given in Remark 1.1).

Step 1. If $(v, \lambda) \in S$ then $v_x(0) \neq 0$ and $\lambda > 0$. Multiplying (1.1) by v and integrating over (0, 1) yields

(1.5)
$$\int_0^1 |v_x|^p \, dx = \lambda \int_0^1 v^p \, dx.$$

Hence necessarily $\lambda > 0$. Multiplying (1.1) by v_x and integrating over (0, x), 0 < x < 1, yields the energy estimate

$$(1.6) (p-1)|v_x(x)|^p + \lambda |v(x)|^p = (p-1)|v_x(0)|^p + \lambda |v(0)|^p.$$

As v(0) = 0 we need $v_x(0) \neq 0$ in order to have a nonzero v.

Step 2. The explicit construction. Assume v is a nonzero solution with $v_x(0) = \alpha > 0$ for example. Then $v_x > 0$ on $[0, x_0)$ for some $x_0 \in (0, 1)$ and

(1.7)
$$v_x(x) = \left(\alpha^p - \frac{\lambda}{p-1}(v(x))^p\right)^{1/p}$$

on $[0, x_0]$, from (1.6), which gives

(1.8)
$$x = \int_0^{v(x)} \frac{dt}{(\alpha^p - \lambda t^p/(p-1))^{1/p}}.$$

Moreover this formula remains valid as long as v(x) remains smaller than the first positive zero of the function

(1.9)
$$r \mapsto \varphi(\alpha, r) = \alpha^p - \lambda r^p/(p-1)$$

which is $S(\alpha) = ((p-1)/\lambda)^{1/p}\alpha$. As $S(\alpha)$ is simple we define $\theta(\alpha)$ by

(1.10)
$$\theta(\alpha) = \int_0^{S(\alpha)} \frac{dt}{(\alpha^p - \lambda t^p/(p-1))^{1/p}}.$$

Moreover $v(\theta(\alpha)) = S(\alpha)$ and $v_x(\theta(\alpha)) = 0$. As $\alpha^p = \lambda S^p(\alpha)/(p-1)$ we get

(1.11)
$$\theta(\alpha) = \theta_{\lambda} = C \left(\frac{p-1}{\lambda}\right)^{1/p}, \quad C = \int_0^1 \frac{ds}{(1-s^p)^{1/p}}.$$

From (1.6) the function v is decreasing on some interval $[\theta_{\lambda}, \Theta)$, so we get

(1.12)
$$x - \theta_{\lambda} = -\int_{v(x)}^{S(\alpha)} \frac{dt}{[(\lambda/(p-1))(S^{p}(\alpha) - t^{p})]^{1/p}},$$

or

$$x - \theta_{\lambda} = -\int_{v(x)}^{S(\alpha)} \frac{dt}{(\alpha^p - \lambda t^p/(p-1))^{1/p}};$$

and this formula remains valid as long as v is decreasing, in particular as long as v is positive. If $x_1 \in (0, \theta_{\lambda})$ and $x_2 = 2\theta_{\lambda} - x_1$ then

$$x_1 = \int_0^{v(x_1)} \frac{dt}{(\varphi(\alpha,t))^{1/p}}, \quad \theta_{\lambda} - x_1 = -\int_{v(x_2)}^{S(\alpha)} \frac{dt}{(\varphi(\alpha,t))^{1/p}}$$

and $v(x_1) = v(x_2)$. As a consequence $x = \theta_{\lambda}$ is an axis of symmetry for the restriction of v to $[0, 2\theta_{\lambda}]$ and $x = 2\theta_{\lambda}$ is a center of symmetry for the restriction of

v to $[0, 4\theta_{\lambda}]$. Hence the function v is $4\theta_{\lambda}$ -periodic on $[0, +\infty)$. The necessary and sufficient condition for the restriction of v to [0, 1] to be a solution of (1.1) is then

$$(1.13) 1/2\theta_{\lambda} \in \mathbf{N}^*,$$

which means (1.3). As for the number of zeros of v in (0,1) it is given by $1/2\theta_{\lambda}-1$. Using the homogeneity of (1.1) we get the desired result as the uniqueness is a consequence of the construction of v.

REMARK 1.1. Existence and uniqueness of the first positive normalized eigenfunction of $-\operatorname{div}(|D|^{p-2}D)$ in $W_0^{1,p}(\Omega)$ have been obtained by De Thelin in the radial case when Ω is a ball [7] and Guedda-Veron for general Ω with a connected C^2 boundary [4].

As for the regularity of v we have

$$(1.14) v \in C^{\alpha}([0,1]) \cap C^{\langle p \rangle}([0,1] \setminus Z)$$

where $Z = \{x \in (0,1) : v_x(x) = 0\}$, $\alpha = \min(\langle (2-p)/(p-1)\rangle + 1, \langle p \rangle)$ and $\langle r \rangle = +\infty$ if $r \in 2\mathbb{N}^*$ or $\langle r \rangle = \min\{n : n \in \mathbb{N}^*, n \geq r\}$ if not.

REMARK 1.2. We have the following Poincaré type relation

$$(1.15) \lambda_1 = \operatorname{Inf} \left\{ \int_0^1 |u_x|^p \, dx / \int_0^1 |u|^p \, dx \colon u \in W_0^{1,p}(0,1) \setminus \{0\} \right\}$$

and the infimum is achieved for $u = v_1$.

2. The bifurcation phenomena. In this section we consider the following equation

(2.1)
$$\begin{cases} -(|u_x|^{p-2}u_x)_x + f(u) = \lambda |u|^{p-2}u & \text{in } (0,1), \\ u(0) = u(1) = 0, \end{cases}$$

where p > 1 and $\lambda \in \mathbf{R}$. As for f we first assume that

$$(2.2) f is a C1 odd function,$$

(2.3)
$$s \mapsto f(s)/s^{p-1}$$
 is strictly increasing on $(0, +\infty)$ with limit 0 at 0,

(2.4)
$$\lim_{s \to +\infty} f(s)/s^{p-1} = +\infty.$$

We then define

(2.5) h is the inverse function of the restriction of $f(s)/s^{p-1}$ to $(0, +\infty)$,

(2.6)
$$H(s) = \lambda s^p - pF(s),$$

where $F(s) = \int_0^s f(t) dt$. For $\lambda > 0$ we shall also consider the following hypothesis:

$$(2.7) (p-1)(H'(s))^2 - pH(s)H''(s) \ge 0 \text{for any } s \in [0, h(\lambda)].$$

Let E_{λ} be the set of all the solutions of (2.1) in $W_0^{1,p}(0,1)$ and λ_k be defined by (1.3). When $1 the structure of <math>E_{\lambda}$ is exactly the same as in the case p = 2.

THEOREM 2.1. Assume 1 and <math>(2.2)-(2.7). Then

(i) if $\lambda \leq \lambda_1$, $E_{\lambda} = \{0\}$, and

(ii) if $\lambda_k < \lambda \leq \lambda_{k+1}$ for some $k \in \mathbb{N}^*$

$$(2.8) E_{\lambda} = \{0, \pm u_1, \dots, \pm u_k\},\$$

where $u_l \in S_l^+$ for $l = 1, \ldots, k$.

REMARK 2.1. The assumption (2.7), which is equivalent to the fact that $s \mapsto H^{p-1}(s)/H'^p(s)$ is nondecreasing on $[0, h(\lambda)]$, is essential for uniqueness but not for existence. In the particular case where $f(r) = |r|^{q-1}r$ with q > p-1 then $h(\lambda) = \lambda^{1/(q+1-p)}$, $H(s) = \lambda s^p - ps^{q+1}/(q+1)$ and (2.7) is satisfied.

PROOF OF THEOREM 2.1. As in Theorem 1.1 it is clear that any solution of (2.1) in $W_0^{1,p}(0,1)$ is continuous and at least C^2 (remember that 1). Multiplying the equation by <math>u yields

(2.9)
$$\int_0^1 |u_x|^p dx + \int_0^1 uf(u) dx = \lambda \int_0^1 |u|^p dx.$$

From Remark 1.2 a nonzero solution of (2.1) can exist only if $\lambda > \lambda_1$, which will be assumed in the sequel.

Step 1. If u is a nonzero solution of (2.1) then $u_x(0) \neq 0$. Although it is a consequence of a general result due to Franchi, Lanconelli and Serrin, we give here a direct proof which also works when p > 2. Multiplying (2.1) by u_x yields the energy relation

(2.10)
$$-\frac{p-1}{p}|u_x(x)|^p + F(u(x)) - \frac{\lambda}{p}|u(x)|^p$$

$$= -\frac{p-1}{p}|u_x(0)| + F(u(0)) - \frac{\lambda}{p}|u(0)|^p.$$

If we assume that $u_x(0) = 0$ we get

(2.11)
$$|u_x(x)|^p = \frac{1}{p-1} (pF(u(x)) - \lambda |u(x)|^p).$$

As the function $x \to pF(x) - \lambda |x|^p$ is negative on $(-\rho, \rho) \setminus \{0\}$, u_x is always 0 and $u \equiv 0$.

Step 2. The explicit construction. Without any loss of generality we assume $u_x(0) = \alpha > 0$. Hence u is increasing on some interval $[0, x_0]$ and from (2.10) we get

(2.12)
$$u_x^p(x) = \alpha^p + \frac{p}{p-1}F(u(x)) - \frac{\lambda}{p-1}u^p(x)$$

which gives u as the inverse function of a p-elliptic integral

(2.13)
$$x = \int_0^{u(x)} \frac{dt}{(\alpha^p + pF(t)/(p-1) - \lambda t^p/(p-1))^{1/p}}$$

on $[0, x_0]$. Moreover this formula remains valid as long as u(x) is smaller than the first positive zero of

(2.14)
$$r \mapsto \Psi(\alpha, r) = \alpha^p + \frac{p}{p-1} F(r) - \frac{\lambda}{p-1} |r|^p.$$

But the function $\Psi(\alpha, \cdot)$ is decreasing in $[0, h(\lambda)]$ and increasing on $[h(\lambda), +\infty)$; hence there are three possibilities.

Case 1.
$$\alpha^p > \lambda h^p(\lambda)/(p-1) - pF(h(\lambda))/(p-1) = \alpha^p(\lambda)$$
.

In that case the function $r \mapsto \int_0^r ds/(\Psi(\alpha, s))^{1/p}$ is an increasing C^2 diffeomorphism from \mathbf{R}^+ onto \mathbf{R}^+ and it is the same with u defined by (2.13) which cannot belong to E_{λ} .

Case 2. $\alpha^p = \alpha^p(\lambda)$.

In that case $h(\lambda)$ is a double zero for $\Psi(\alpha, \cdot)$, and as 1

$$\int_0^{h(\lambda)} ds / (\Psi(\alpha, s))^{1/p} = +\infty.$$

As in Case 1 the function $r \mapsto \int_0^r ds/(\Psi(\alpha, s))^{1/p}$ is a C^2 diffeomorphism from $[0, h(\lambda))$ onto \mathbf{R}^+ and u cannot belong to E_{λ} .

Case 3. $\alpha^p < \alpha^p(\lambda)$.

In that case $\Psi(\alpha, \cdot)$ admits a simple zero $S(\alpha)$ in $(0, h(\lambda))$. As $(\partial \Psi/\partial r)(\alpha, S(\alpha)) \neq 0$, $r \mapsto (\Psi(\alpha, r))^{-1/p}$ is integrable on $(0, S(\alpha))$ and we define

(2.15)
$$\theta(\alpha) = \int_0^{S(\alpha)} \frac{ds}{(\Psi(\alpha, s))^{1/p}}.$$

Relation (2.13) remains valid on $[0, \theta(\alpha)]$ and we have

(2.16)
$$u(\theta(\alpha)) = S(\alpha), \quad u_{\pi}(\theta(\alpha)) = 0.$$

Using the energy relation at $\theta(\alpha)$ we have

$$(2.17) \qquad \frac{p-1}{p}|u_x(x)|^p = \frac{\lambda}{p}S^p(\alpha) - F(S(\alpha)) - \left(\frac{\lambda}{p}u^p(x) - F(u(x))\right)$$

or

$$|u_x(x)|^p = \alpha^p + \frac{p}{p-1}F(u(x)) - \frac{\lambda}{p-1}u^p(x).$$

Hence u is decreasing on some interval $[\theta(\alpha), \Theta]$ and we have

(2.18)
$$x - \theta(\alpha) = -\int_{u(x)}^{S(\alpha)} \frac{ds}{(\Psi(\alpha, s))^{1/p}}.$$

This formula remains valid as long as u is decreasing, and as in §1 $x = \theta(\alpha)$ is an axis of symmetry for the restriction of u to $[0, 2\theta(\alpha)]$ and $x = 2\theta(\alpha)$ is a center of symmetry for the restriction of u to $[0, 4\theta(\alpha)]$; the necessary and sufficient condition for u to be a solution of (2.1) is that

$$(2.19) 1/2\theta(\alpha) \in \mathbf{N}^*.$$

Step 3. The function $\alpha \mapsto S(\alpha)$ is convex, increasing on $[0, \alpha(\lambda))$. We have $\Psi(\alpha, S(\alpha)) = 0$ and $(\partial \Psi/\partial r)(\alpha, S(\alpha)) \neq 0$. By the implicit function theorem $\alpha \mapsto S(\alpha)$ is C^2 . We also have

$$\frac{d}{d\alpha}(\Psi(\alpha,S(\alpha))) = \frac{\partial \Psi}{\partial \alpha}(\alpha,S(\alpha)) + \frac{\partial \Psi}{\partial r}(\alpha,S(\alpha))\frac{dS}{d\alpha}(\alpha)$$

which gives

(2.20)
$$\frac{dS}{d\alpha}(\alpha) = \frac{(p-1)\alpha^{p-1}}{\lambda S^{p-1}(\alpha) - f(S(\alpha))} = \frac{p(p-1)\alpha^{p-1}}{H'(S(\alpha))}.$$

As $S(\alpha) < h(\lambda)$, $\alpha \mapsto S(\alpha)$ is increasing on $[0, \alpha(\lambda))$. Moreover

$$\frac{d^2S}{d\alpha^2}(\alpha) = p(p-1)\frac{(p-1)\alpha^{p-2}H'(S(\alpha)) - \alpha^{p-1}H''(S(\alpha))dS/d\alpha}{(H'(S(\alpha)))^2}.$$

Using (2.20) and the definition of $S(\alpha)$ and H we get

$$(2.21) \qquad \frac{d^2S}{d\alpha^2}(\alpha) = p(p-1)\alpha^{p-2} \frac{(p-1)(H'(S(\alpha)))^2 - pH(S(\alpha))H''(S(\alpha))}{(H'(S(\alpha)))^3}.$$

From (2.7) we deduce $d^2S(\alpha)/d\alpha^2 \ge 0$.

Step 4. The function $\alpha \mapsto \theta(\alpha)$ is continuous increasing on $[0, \alpha(\lambda))$. For $t \in [0, \alpha]$ the function $s \mapsto \Psi(t, s)$ admits a first positive zero at S(t) which means

$$t^p + \frac{p}{p-1}F(S(t)) - \frac{\lambda}{p-1}S^p(t) = 0$$
 and $\Psi(\alpha, S(t)) = \alpha^p - t^p$.

Taking t as a new variable in (2.15) we get

(2.22)
$$\theta(\alpha) = \int_0^\alpha \frac{dS}{dt}(t) \frac{dt}{(\alpha^p - t^p)^{1/p}}$$

or

(2.23)
$$\theta(\alpha) = \int_0^1 \frac{dS}{dt} (\alpha \sigma) \frac{d\sigma}{(1 - \sigma^p)^{1/p}}.$$

As ds/dt is increasing and C^1 on $[0, \alpha(\lambda))$, it is the same with $\alpha \mapsto \theta(\alpha)$.

Step 5. End of the proof. As $\lim_{\alpha\downarrow 0} S(\alpha) = 0$ and $\lim_{\alpha\downarrow 0} F(S(\alpha))/S^p(\alpha) = 0$ we get

(2.24)
$$S(\alpha) \underset{\alpha \downarrow 0}{\sim} \alpha \left(\frac{p-1}{\lambda}\right)^{1/p}$$

which implies

$$\lim_{\alpha \downarrow 0} \frac{dS}{d\alpha}(\alpha) = \left(\frac{p-1}{\lambda}\right)^{1/p}$$

and

(2.25)
$$\lim_{\alpha \downarrow 0} \theta(\alpha) = \left(\frac{p-1}{\lambda}\right)^{1/p} \int_0^1 \frac{d\sigma}{(1-\sigma^p)^{1/p}} = \frac{1}{2} \left(\frac{\lambda_1}{\lambda}\right)^{1/p}.$$

For the other bound we have $\lim_{\alpha\downarrow\alpha(\lambda)} S(\alpha) = h(\lambda)$. As $h(\lambda)$ is just a double zero for $\Psi(\alpha(\lambda), r)$, there exists a continuous and bounded function φ on $[0, \alpha(\lambda)]$ such that

$$\Psi(\alpha(\lambda), r) = (h(\lambda) - r)^2 \varphi(r).$$

Moreover

$$\begin{split} \int_0^{S(\alpha)} (\Psi(\alpha,t))^{-1/p} dt &> \int_0^{S(\alpha)} (\Psi(\alpha(\lambda),t))^{-1/p} dt \\ &= \int_0^{S(\alpha)} (h(\lambda)-t)^{-2/p} (\varphi(t))^{-1/p} dt. \end{split}$$

As 1 we get

(2.26)
$$\lim_{\alpha \uparrow \alpha(\lambda)} \theta(\alpha) = \int_0^{h(\lambda)} (h(\lambda) - t)^{-2/p} (\varphi(t))^{-1/p} dt = +\infty.$$

As a consequence $\alpha \mapsto \theta(\alpha)$ is an increasing diffeomorphism from $(0, \alpha(\lambda))$ onto $(\frac{1}{2}(\lambda_1/\lambda)^{1/p}, +\infty)$ and $1/2\theta(\alpha)$ a decreasing diffeomorphism from $(0, \alpha(\lambda))$ onto $(0, (\lambda/\lambda_1)^{1/p})$. If we assume that $\lambda_k < \lambda \leq \lambda_{k+1}$ for some $k \in \mathbb{N}^*$ there exist exactly k integers $l = 1, \ldots, k$ and k positive real numbers α_l such that $1/2\theta(\alpha_l) = l$. If u_l is the solution of the initial value problem

(2.27)
$$\begin{cases} -(|u_{lx}|^{p-2}u_{lx})_x + f(u_l) = \lambda |u_l|^{p-2}u_l & \text{on } (0,1), \\ u_l(0) = 0, \quad u_{lx}(0) = \alpha_l, \end{cases}$$

then $u_l(1) = 0$, $u_l \in S_l^+$. We get the result in considering $-u_l$, l = 1, ..., k.

REMARK 2.2. If we represent the bifurcation diagram (λ, u_{λ}) then there exists no secondary bifurcation along the branches of solutions in S_k^{\pm} issuing from λ_k .

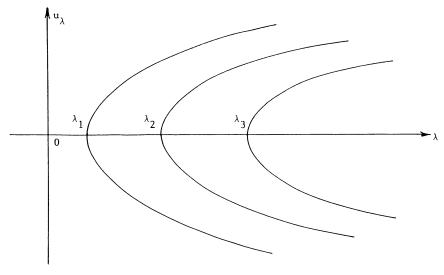


FIGURE 1

In the case p>2 the main difference will come from the fact that the following integral

(2.28)
$$x(\lambda) = \int_0^{h(\lambda)} \frac{ds}{(\alpha^p(\lambda) + \frac{p}{p-1}F(s) - \frac{\lambda}{p-1}s^p)^{1/p}}$$

is finite as $h(\lambda)$ is a double zero of $\Psi(\alpha(\lambda), r)$.

THEOREM 2.2. Assume p > 2 and (2.2)-(2.7). Then

- (i) if $\lambda \leq \lambda_1 E_{\lambda} = \{0\}$,
- (ii) if $\lambda_k < \lambda \leq \lambda_{k+1}$ for some $k \in \mathbf{N}^*$

(2.29)
$$E_{\lambda} = \{0\} \cup \{\pm u_1\} \bigcup_{l=2}^{k} \{\pm E_{\lambda}^{l}\},$$

where $u_1 \in S_1^+$ and $E_{\lambda}^l \subset S_l^+$, l = 2, ..., k, and E_{λ}^l is reduced to a single element if $2lx(\lambda) \ge 1$, E_{λ}^l is diffeomorphic to $[0, 1]^{l-1}$ if $0 < 2px(\lambda) < 1$.

PROOF. The idea is essentially the same as in Theorem 2.1 except that in Step 2, Case 2 (that is, if $\alpha^p = \alpha^p(\lambda)$) gives rise to solutions of (2.1) with maximum value $h(\lambda)$, and in that case Serrin and Veron's existence and uniqueness result does not apply; moreover the value $u = h(\lambda)$ is a bifurcation value for (2.1).

- Step 1. Assume $2x(\lambda) \geq 1$. Then the construction of Theorem 2.1 works: the function $\alpha \mapsto 1/2\theta(\alpha)$ is a decreasing diffeomorphism from $(0,\alpha(\lambda)]$ onto $[1/2x(\lambda),(\lambda/\lambda_1)^{1/p})$. As $\lambda_k < \lambda \leq \lambda_{k+1}$ there exist exactly k integers $1,2,\ldots,k$ and k positive real numbers α_1,\ldots,α_k such that $1/2\theta(\alpha_l)=l\in[1/2x(\lambda),(\lambda/\lambda_1)^{1/p}),$ $l=1,\ldots,k$. and we get the corresponding solutions $u_l\in S_l^+$ by (2.26).
- Step 2. Assume $4x(\lambda) \geq 1 > 2x(\lambda)$. All the elements $u_l = 2, ..., k$ in S_l^+ are constructed as in Step 1. As for the element $u_1 \in S_1^+$ it has necessarily the following form as the initial slope must be $\alpha(\lambda)$:

(2.32)
$$x - (1 - x(\lambda)) = -\int_{u_1(x)}^{h(\lambda)} \frac{dt}{(\Psi(\alpha(\lambda), t))^{1/p}}.$$

Step 3. Assume $0 < 2lx(\lambda) < 1$ for some $l \in \{2, ..., k\}$. We can construct all the elements of $E_{\lambda} \cap S_{l}^{+}$ in the following way as their initial slope is necessarily $\alpha(\lambda)$:

$$(2.33) for 0 \le x \le x(\lambda)$$

$$x = \int_0^{u_l(x)} \frac{dt}{(\Psi(\alpha(\lambda), t))^{1/p}},$$

$$for x(\lambda) \le x \le x_1 \text{ where } x_1 \in (x(\lambda), 1) \text{ and}$$

$$(2.34) x_1 - x(\lambda) \le 1 - 2lx(\lambda)$$

$$then u_l(x) = h(\lambda),$$

$$for x_1 \le x \le 2x(\lambda) + x_1$$

$$(2.35) x - x_1 = -\int_{u_l(x)}^{h(\lambda)} \frac{dt}{(\Psi(\alpha(\lambda), t))^{1/p}},$$

$$for x_1 + 2x(\lambda) \le x \le x_2 \text{ where } x_2 \in (x_1 + 2x(\lambda), 1) \text{ and}$$

$$(2.36) x_2 - (x_1 + 2x(\lambda)) + x_1 - x(\lambda) \le 1 - 2lx(\lambda)$$

$$then u_l(x) = -h(\lambda).$$

¹And more naturally to the set $K_l = \{x = (x^1, \dots, x^l), x^j \geq 0, \sum_{j=1}^l x^j = 1 - 2lx(\lambda)\}.$

Continuing this procedure any solution $u_l \in S_l^+$ is defined by the intervals $I_j = [x_{j-1} + 2x(\lambda), x_j], j = 1, \ldots, l$, and $x_0 = -x(\lambda)$ where it takes the constant value $(-1)^{j+1}h(\lambda)$ and the intervals $[x_{j-1}, x_{j-1} + 2x(\lambda)]$ where it is defined by

(2.37)
$$x - x_{j-1} = -\int_{u_j(x)}^{h(\lambda)} \frac{dt}{(\Psi(\alpha(\lambda), t))^{1/p}}$$

if j is even or

(2.38)
$$x - x_{j-1} = \int_{h(\lambda)}^{u_l(x)} \frac{dt}{(\Psi(\alpha(\lambda), t))^{1/p}}$$

if j is odd.

From the above construction the total length of the I_j is $1 - 2lx(\lambda)$ and the set E_{λ}^l of the u_l is diffeomorphic to the (l-1)-dimensional cube.

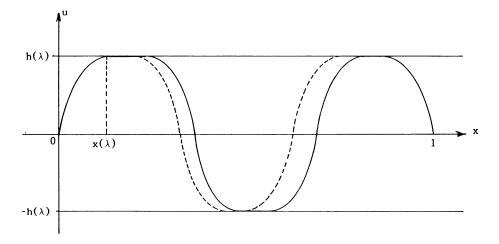


FIGURE 2. Example of construction of E_{λ}^3

REMARK 2.3. It is important to notice that this type of secondary bifurcation along the branch of solutions issuing from λ_k , $k \geq 2$, always appears if we have

$$\lim_{\lambda \to +\infty} x(\lambda) = 0.$$

This is in particular the case if $f(r) \sim r + \infty |r|^{q-1}r$ which implies (2.40)

$$x(\lambda) \underset{\lambda \to +\infty}{\sim} \lambda^{-1/p} \int_0^1 \left(\frac{q+1-p}{(p-1)(q+1)} + \frac{p}{(p-1)(q+1)} \sigma^{q+1} - \frac{\sigma^p}{p-1} \right)^{-1/p} d\sigma.$$

However this is not always the case under conditions (2.2)–(2.7), for example, with $f(r) = (|r|^{p-2} \operatorname{Log} |r|)r$ for $|r| \geq 2$, where we get

(2.41)
$$\lim_{\lambda \to +\infty} x(\lambda) = \int_0^1 \left(\frac{1}{p(p-1)} (1 - \sigma^p) + \frac{1}{p-1} \sigma^p \operatorname{Log} \sigma \right)^{-1/p} d\sigma.$$

We finally have the following exclusion principle.

THEOREM 2.3. Assume p > 1, (2.2)-(2.7), g is a continuous even function increasing on \mathbb{R}^+ and u_1 and u_2 are two solutions of (2.1); then

(i) if u_1 and u_2 have the same number of zeros

(2.42)
$$\int_0^1 g(u_1(x)) dx = \int_0^1 g(u_2(x)) dx;$$

(ii) if u_1 and u_2 do not have the same number of zeros

(2.43)
$$\int_0^1 g(u_1(x)) dx \neq \int_0^1 g(u_2(x)) dx.$$

PROOF. It is clear that for any function $\int_0^1 g(u(x)) dx$ is equal to $\int_0^1 g(-u(x)) dx$. When p > 2 we have only to consider two solutions of E_{λ} with the same number of zeros and belonging to some E_{λ}^l , $l \geq 2$, in the case $2lx(\lambda) < 1$. In that case u_1 and u_2 take the value $\pm h(\lambda)$ on l intervals I_j^1 and I_j^2 , $j = 1, \ldots, l$, which are disconnected and have the same total length which gives

(2.44)
$$\int_{\bigcup_{j} I_{j}^{1}} g(u_{1}(x)) dx = \int_{\bigcup_{j} I_{j}^{2}} g(u_{2}(x)) dx = (1 - 2lx(\lambda))g(h(\lambda)).$$

On $(0,1)\setminus\{\bigcup_j I_j^1\}$ or $(0,1)\setminus\{\bigcup_j I_j^2\}$ u_1 and u_2 are defined by the same types of formula ((2.32) or (2.30)) and the integral of $g(u_i)$ over these sets is

$$2l\int_0^{x(\lambda)}g(u_1(x))\,dx.$$

Hence, for i = 1, 2, we get

(2.45)
$$\int_0^1 g(u_i(x)) dx = (1 - 2lx(\lambda))g(h(\lambda)) + 2l \int_0^{x(\lambda)} g(u_i(x)) dx$$

which proves (i).

For proving (ii) we shall assume either 1 or <math>p > 2 but u_1 and u_2 are not constant on any subinterval of (0,1) (the other case is essentially the same). If u_1 and u_2 do not have the same number of zeros in (0,1) we can assume $u_{1x}(0) = \alpha$, $u_{2x}(0) = \beta$, $0 < \alpha < \beta$; u_1 is $4\theta(\alpha)$ -periodic, u_2 is $4\theta(\beta)$ -periodic and $0 < \theta(\alpha) < \theta(\beta)$. Moreover

(2.46)
$$\frac{1}{2\theta(\alpha)} = k_1, \quad \frac{1}{2\theta(\beta)} = k_2, \qquad k_1, k_2 \in \mathbb{N}^*, \ k_1 > k_2.$$

Step 1. For $0 < x < \theta(\alpha)$ we have $0 < u_1(x) < u_2(x)$. On a right neighbourhood of 0 we have $u_1 < u_2$, and u_1 and u_2 are increasing on $[0, \theta(\alpha)]$. If we assume the existence of some $x_0 \in [0, \theta(\alpha)]$ such that $u_1(x_0) = u_2(x_0)$, we can always suppose that $u_1 < u_2$ in $(0, x_0)$ and then $u_{1x}(x_0) \ge u_{2x}(x_0)$. The energy relation implies

(2.47)
$$\alpha^{p} + \frac{p}{p-1}F(u_{1}(x_{0})) - \frac{\lambda}{p-1}u_{1}^{p}(x_{0})$$
$$\geq \beta^{p} + \frac{p}{p-1}F(u_{2}(x_{0})) - \frac{\lambda}{p-1}u_{2}^{p}(x_{0})$$

and $\alpha \geq \beta$ which is impossible.

Step 2. End of the proof. From Step 1: $0 < u_1(x) < u_2(x')$ for $0 < x < \theta(\alpha)$ and $0 < x \le x' < \theta(\beta)$. Set φ the lowest common multiple to k_1 and k_2 . There exist n_1 and $n_2 \in \mathbb{N}^*$ such that $n_1k_1 = n_2k_2 = \varphi$ and

(2.48)
$$n_1/\theta(\alpha) = n_2/\theta(\beta), \quad 0 < n_1 < n_2.$$

Then

(2.49)
$$\int_0^1 g(u_1(x)) \, dx = \frac{1}{\theta(\alpha)} \int_0^{\theta(\alpha)} g(u_1(x)) \, dx,$$

(2.50)
$$\int_0^1 g(u_2(x)) dx = \frac{1}{\theta(\beta)} \int_0^{\theta(\beta)} g(u_2(x)) dx.$$

Setting $T = n_2 \theta(\alpha) = n_1 \theta(\beta)$, we have

$$\frac{1}{\theta(\alpha)} \int_0^{\theta(\alpha)} g(u_1(x)) dx = \frac{1}{n_2 \theta(\alpha)} \int_0^{n_2 \theta(\alpha)} g\left(u_1\left(\frac{\sigma}{n_2}\right)\right) d\sigma$$
$$= \frac{1}{T} \int_0^T g\left(u_1\left(\frac{\sigma}{n_2}\right)\right) d\sigma$$

and

$$\frac{1}{\theta(\beta)} \int_0^{\theta(\beta)} g(u_2(x)) dx = \frac{1}{T} \int_0^T g\left(u_2\left(\frac{\sigma}{n_1}\right)\right) d\sigma,$$

which implies

(2.51)
$$\int_0^1 g(u_1(x)) \, dx < \int_0^1 g(u_2(x)) \, dx.$$

REMARK 2.4. As a consequence there exist k+1 different critical values for the energy functional

(2.52)
$$J(\omega) = \frac{1}{p} \int_0^1 |\omega_x|^p \, dx + \int_0^1 F(\omega) \, dx - \frac{\lambda}{p} \int_0^p |\omega|^p \, dx$$

defined in $W_0^{1,p}(0,1)$, for $\lambda_k < \lambda \leq \lambda_{k+1}$; those critical values only depend on the set S_l , $l=1,\ldots,k$, the critical points of (2.52) belong to. This is an immediate consequence of Theorem 2.3 and the fact that

(2.53)
$$J(u) = \int_{0}^{1} \left(F(u) - \frac{1}{p} u f(u) \right) dx$$

for $u \in E_{\lambda}$.

REFERENCES

- H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques, J. Funct. Anal. 40 (1981), 1-19.
- 2. M. S. Berger, Nonlinearity and functional analysis, Academic Press, 1977.
- 3. X. Y. Chen, H. Matano and L. Veron, Anisotropic singularities of solutions of nonlinear elliptic equations in \mathbb{R}^2 , J. Funct. Anal. (to appear).
- 4. M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. (to appear).

- 5. M. Otani, On certain second order differential equations associated with Sobolev-Poincaré-type inequalities, Nonlinear Anal. 8 (1984), 1255-1270.
- F. De Thelin, Quelques resultats d'existence et de non-existence pour une E. D. P. elliptique non linéraire, C. R. Acad. Sci. Paris 299 (1984), 911-914.
- 7. ____, Sur l'espace propre associé à la première valeur propre du pseudo-laplacien, C. R. Acad. Sci. Paris 303 (1986), 355-358.

DÉPARTEMENT DE MATHÉMATIQUES, FACULTÉ DES SCIENCES, PARC DE GRANDMONT, F-37200 TOURS, FRANCE